CS 42I Lecture 12

- Compilation static languages, continued
- Compiling in context
- Assignment
- Break and labeled statements
- Short-circuit evaluation of boolean expressions
- Switch statements
- Arrays
- Code optimization
- Friday's class: dynamic languages - code generation, garbage collection, reflection

Notation

- [S] = compiled code for S
- [e] = compiled code for e
- Use subscripts on brackets for additional arguments, e.g. $[S]_{L}$ is compiled code for S, assuming S occurs within a switch statements labeled L.

Assignment statements

- Old scheme: $[\mathrm{x}=\mathrm{e}]=\operatorname{let}(\mathrm{I}, \mathrm{t})=[\mathrm{e}]$ in $\mathrm{I} ; \mathrm{x}=\mathrm{t}$.
- Can give poor results: $[x=3]=t=3 ; x=t$

$$
[x=x+1]=t 1=1 ; t 2=x+t \mid ; x=t 2
$$

- Compile expressions in context of target location: $[\mathrm{e}]_{\mathrm{x}}=$ code to calculate value of e and store it in $\mathrm{x} .[\mathrm{e}]_{\mathrm{x}}$: instruction list
- $[\mathrm{x}=\mathrm{e}]=[\mathrm{e}] \mathrm{x}$
- $[n]_{x}=$ " $x=n$ "
- $[y]_{x}=$ " $x=y$ ", if y a different variable from $x ; \epsilon$, otherwise
- $[\mathrm{el}+\mathrm{e} 2]_{\mathrm{x}}=$ let $\mathrm{t}=$ new location in $[\mathrm{el}]_{\mathrm{r}} ;[\mathrm{e} 2]_{\mathrm{x}} ; \mathrm{x}=\mathrm{t}+\mathrm{x}$

break statements

- break statement breaks from one level of switch or while. Cannot translate "break" without knowing context.
- $[S]_{L}=$ code for statement S, given that S occurs inside a switch or while statement, and L is the label just after that enclosing statement.

Boolean expressions

- Current scheme: boolean expressions evaluated like any other, placing value in a temporary location:

$$
\begin{aligned}
{[\mathrm{el}<\mathrm{e} 2]=} & \text { let }\left(\mathrm{l}_{\mathrm{l}}, \mathrm{tl}\right)=[\mathrm{el}],\left(\mathrm{I}_{2}, \mathrm{t} 2\right)=[\mathrm{e} 2], \mathrm{t}=\text { newloc }() \\
& \text { in }\left(\mathrm{I}_{1} ; \mathrm{I}_{2} ; \mathrm{t}=\mathrm{tl}<\mathrm{t} 2, \mathrm{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
{[\mathrm{el} \& \& \mathrm{e} 2]=\text { let }\left(\mathrm{l}_{1}, \mathrm{t} \mid\right) } & =[\mathrm{el}] \\
\left(\mathrm{l}_{2}, \mathrm{t} 2\right) & =[\mathrm{e} 2] \\
\text { in }\left(\mathrm{l}_{1} ; \mid 2 ; \mathrm{t}\right. & =\mathrm{tl} \& \& \mathrm{t} 2, \mathrm{t})
\end{aligned}
$$

[if e then SI else S2] = let $(1, t)=[e]$
in (I CJUMP t LI L2; ...)

- What's wrong?

Lecture 12

Boolean expressions w/ short-circuit evaluation

- Improved scheme:

$$
\begin{aligned}
& \text { [el \&\& e2] = let } \mathrm{t}=\text { newlocation() } \\
& \mathrm{I}_{1}=[\mathrm{el}]_{\mathrm{t}} \\
& \mathrm{I}_{2}=[\mathrm{e} 2]_{\mathrm{t}} \\
& \text { LI, L2 = newlabel() } \\
& \text { in (} l_{1} \\
& \text { CJUMP t, LI, L2 } \\
& \text { LI: } 12 \\
& \text { L2: , t) }
\end{aligned}
$$

- What's wrong now?

Lecture 12

Compiling boolean expressions in context

- Get better code if boolean expression can jump to correct label as soon as possible
- $[\mathrm{e}]_{\mathrm{Lt}, \mathrm{Lf}}=$ code that calculates e and jumps to $L t$ if it is true, Lf if it is false. The code does not save the value anywhere.
$[\text { true }]_{\text {Lt,Lf }}$
$[\mathrm{e} \mid<\mathrm{e} 2]_{\mathrm{Lt}, \mathrm{Lf}}$

Compiling boolean expressions in context

$\left[\mathrm{el} \& \& \mathrm{e}^{2}\right]_{\mathrm{Lt,Lf}}$
[while e do S]

Compiling switch statement

- Use "jump table" and address calculation

Compiling object references

- In expression e.t:
- Type of e is known; call its class C
- Location of field t within C is known; say its offset is o
- [e] will produce (l, t), where t contains pointer to object
- $[\mathrm{e} . \mathrm{t}]=\operatorname{let}(\mathrm{l}, \mathrm{t})=[\mathrm{e}]$
$\mathrm{tl}=$ newlocation()
in ($\mathrm{l} ; \mathrm{tl}=\mathrm{t}+\mathrm{o}, \mathrm{tl}$)
- Method calls e.t(...) more complicated - will discuss in a couple of weeks

Compiling array references

- Simple rule: If A has elements of type T , and if elements of type T occupy n bytes, then address of $A[i]$ is address of $A+i * n$.

$$
\begin{align*}
& {[\mathrm{A}[\mathrm{e}]]=\text { let }(\mathrm{l}, \mathrm{t}) }=[\mathrm{e}] \\
& \text { in }(\mathrm{l} \\
& \mathrm{tI}=\& \mathrm{~A} \\
& \mathrm{t} 2=\mathrm{t}^{*} \mathrm{w} \quad\left(\mathrm{w} \text { size of } \mathrm{A}^{\prime} \text { 's elements }\right) \\
& \mathrm{t} 3=\mathrm{t} \mathrm{l}+\mathrm{t} 2 \\
& \mathrm{t} 4=\text { LOADIND } \mathrm{t} 3,
\end{align*}
$$

Compiling array references

- Idea extends to multi-dimensional arrays.

Machine-independent optimizations

- Machine-independent optimization = optimizations that can be done at the level of IR - i.e. does not depend upon features of target machine such as registers, pipeline, special instructions
- E.g. "loop-invariant code motion":

```
int A[100][100]
while (j<n) {
    x=x+A[i]j]
    j++;
}
```

$$
\begin{aligned}
& \mathrm{t} 1=\& \mathrm{~A} \\
& \mathrm{t} 2=\mathrm{i} \star 100 \\
& \mathrm{t} 3=\mathrm{t} 2+\mathrm{j} \\
& \mathrm{t} 4=\mathrm{t} 3^{*} 4 \\
& \mathrm{t} 5=\mathrm{t} 1+\mathrm{t} 4 \\
& \mathrm{t} 6=\text { LOADIND } \mathrm{t} 5 \\
& \mathrm{x}=\mathrm{x}+\mathrm{t} 6 \\
& \mathrm{j}=\mathrm{j}+1
\end{aligned}
$$

Machine-dependent optimizations

- Machine-dependent optimization = optimizations that exploit features of target machine such as registers, pipeline, special instructions
- Register allocation
- Instruction selection
- Instruction scheduling

